60,441 research outputs found

    Design considerations for a HE-3 refrigerator for space applications

    Get PDF
    The low temperature provided by He-3 refrigerators (0.3 to 3 K) have useful space applications. However, the low temperatures and the low surface tension of He-3 require special design considerations. The considerations include the need for small pores to contain the liquid in a matrix; the effects of bubble nucleation and growth; and the effects of the thermal conductivity within the matrix. These design considerations are discussed and a possible confinement system is analyzed

    Observations of 8-amu/unit charge ion cyclotron whistlers

    Get PDF
    Ion cyclotron whistler in very low frequency noise observations with Injun 5 satellit

    Correlation of bow shock plasma wave turbulence with solar wind parameters

    Get PDF
    The r.m.s. field strengths of electrostatic and electromagnetic turbulence in the earth's bow shock, measured in the frequency range 20 Hz to 200 kHz with IMP-6 satellite, are found to correlate with specific solar wind parameters measured upstream of the bow shock

    Emergent Nesting of the Fermi Surface from Local-Moment Description of Iron-Pnictide High-Tc Superconductors

    Get PDF
    We uncover the low-energy spectrum of a t-J model for electrons on a square lattice of spin-1 iron atoms with 3dxz and 3dyz orbital character by applying Schwinger-boson-slave-fermion mean-field theory and by exact diagonalization of one hole roaming over a 4 x 4 x 2 lattice. Hopping matrix elements are set to produce hole bands centered at zero two-dimensional (2D) momentum in the free-electron limit. Holes can propagate coherently in the t-J model below a threshold Hund coupling when long-range antiferromagnetic order across the d+ = 3d(x+iy)z and d- = 3d(x-iy)z orbitals is established by magnetic frustration that is off-diagonal in the orbital indices. This leads to two hole-pocket Fermi surfaces centered at zero 2D momentum. Proximity to a commensurate spin-density wave (cSDW) that exists above the threshold Hund coupling results in emergent Fermi surface pockets about cSDW momenta at a quantum critical point (QCP). This motivates the introduction of a new Gutzwiller wavefunction for a cSDW metal state. Study of the spin-fluctuation spectrum at cSDW momenta indicates that the dispersion of the nested band of one-particle states that emerges is electron-type. Increasing Hund coupling past the QCP can push the hole-pocket Fermi surfaces centered at zero 2D momentum below the Fermi energy level, in agreement with recent determinations of the electronic structure of mono-layer iron-selenide superconductors.Comment: 41 pages, 12 figures, published versio

    Does the proton-to-electron mass ratio vary in the course of cosmological evolution?

    Full text link
    The possible cosmological variation of the proton-to-electron mass ratio was estimated by measuring the H_2 wavelengths in the high-resolution spectrum of the quasar Q~0347-382. Our analysis yielded an estimate for the possible deviation of \mu value in the past, 10 Gyr ago: for the unweighted value Δμ/μ=(3.0±2.4)×105\Delta \mu / \mu = (3.0\pm2.4)\times10^{-5}; for the weighted value Δμ/μ=(5.02±1.82)×105 \Delta \mu / \mu = (5.02\pm1.82)\times10^{-5} Since the significance of the both results does not exceed 3σ\sigma, further observations are needed to increase the statistical significance. In any case, this result may be considered as the most stringent estimate on an upper limit of a possible variation of \mu (95% C.L.): Δμ/μ<8×105 |\Delta \mu / \mu| < 8\times 10^{-5} This value serves as an effective tool for selection of models determining a relation between possible cosmological deviations of the fine-structure constant \alpha and the elementary particle masses (mp_p, me_e, etc.).Comment: 6 pages, 1 figure. Talk presented at the JENAM 2002 Workshop on Varying Fundamental Constants, Porto, 4th September 2002. To be published in the Conference Proceeding

    On the heating of source of the Orion KL hot core

    Full text link
    We present images of the J=10-9 rotational lines of HC3N in the vibrationally excited levels 1v7, 1v6 and 1v5 of the hot core (HC) in Orion KL. The images show that the spatial distribution and the size emission from the 1v7 and 1v5 levels are different. While the J=10-9 1v7 line has a size of 4''x 6'' and peaks 1.1'' NE of the 3 mm continuum peak, the J=10--9 1v5 line emission is unresolved (<3'') and peaks 1.3'' south of the 3 mm peak. This is a clear indication that the HC is composed of condensations with very different temperatures (170 K for the 1v7 peak and >230>230 K for the 1v5 peak). The temperature derived from the 1v7 and 1v5 lines increases with the projected distance to the suspected main heating source I. Projection effects along the line of sight could explain the temperature gradient as produced by source I. However, the large luminosity required for source I, >5 10^5 Lsolar, to explain the 1v5 line suggests that external heating by this source may not dominate the heating of the HC. Simple model calculations of the vibrationally excited emission indicate that the HC can be internally heated by a source with a luminosity of 10^5 Lsolar, located 1.2'' SW of the 1v5 line peak (1.8'' south of source I). We also report the first detection of high-velocity gas from vibrationally excited HC3N emission. Based on excitation arguments we conclude that the main heating source is also driving the molecular outflow. We speculate that all the data presented in this letter and the IR images are consistent with a young massive protostar embedded in an edge-on disk.Comment: 13 pages, 3 figures, To be published in Ap.J. Letter

    Macroscopic Phase Coherence of Defective Vortex Lattices in Two Dimensions

    Full text link
    The superfluid density is calculated theoretically for incompressible vortex lattices in two dimensions that have isolated dislocations quenched in by a random arrangement of pinned vortices. The latter are assumed to be sparse and to be fixed to material defects. It is shown that the pinned vortices act to confine a single dislocation of the vortex lattice along its glide plane. Plastic creep of the two-dimensional vortex lattice is thereby impeded, and macroscopic phase coherence results at low temperature in the limit of a dilute concentration of quenched-in dislocations.Comment: 18 pages, 1 figure, 1 table, new title, submitted to Physical Review
    corecore